Local Stability Analysis of Saturating Systems via Polynomial Programming

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

stability analysis of fractional-order nonlinear systems via lyapunov method

‎in this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of lyapunov‎ ‎method‎. ‎to examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Polyhedral regions of local stability for linear discrete-time systems with saturating controls

The study and the determination of polyhedral regions of local stability for linear systems subject to control saturation is addressed. The analysis of the nonlinear behavior of the closed-loop saturated system is made by dividing the state space in regions of saturation. Inside each of these regions, the system evolution can be represented by a linear system with an additive disturbance. From ...

متن کامل

Local stability analysis of nonlinear systems

This paper considers local stability properties of systems comprising stable linear time-invariant operators in combination with a scalar nonlinearity. We consider those nonlinearities whose gain can be related to the peak value of their input signal. It is assumed that the nonlinearity has some nominal gain for small signals (ie with peak value less than some number), and that the gain then in...

متن کامل

Local stability analysis using simulations and sum-of-squares programming

The problem of computing bounds on the region-of-attraction for systems with polynomial vector fields is considered. Invariant subsets of the region-of-attraction are characterized as sublevel sets of Lyapunov functions. Finite-dimensional polynomial parametrizations for Lyapunov functions are used. A methodology utilizing information from simulations to generate Lyapunov function candidates sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers

سال: 2006

ISSN: 0453-4654

DOI: 10.9746/sicetr1965.42.758